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Abstract 

The phases of X-ray reflections are lost in the 
diffraction process in conventional two-beam diffrac- 
tion. It is shown that the phases are not lost when three 
beams diffract simultaneously, and that phase infor- 
mation can be extracted from knowledge of the spatial 
distribution of the diffracted intensities about the three- 
beam point. In centrosymmetric crystals, the dis- 
tribution is a sensitive function of the invariant phase of 
the product of the structure factors involved in 
simultaneous diffraction. High-resolution divergent- 
beam photographs illustrating the intensity differences 
associated with positive and negative triplet-phase 
products are shown. 

Introduction 

It has long been suspected that coherent interactions 
among diffracted X-ray beams which take place when 
several sets of planes diffract simultaneously may 
provide clues to a solution of the X-ray 'phase 
problem'. For this reason, simultaneous n-beam diffrac- 
tion (n > 2) has been investigated by Lipscomb (1949), 
Eckstein (1949), Fankuchen (1949), Miyake & Kambe 
(1954), Kambe (1957), Hart & Lang (1961), and many 
others, but with only limited success. 

In general, the phases of the structure factors of 
individual reflections from single crystals vary with the 
position assigned to the origin of the unit cell. Such 
phases are clearly unsuited for experimental deter- 
mination. The products of the phases of groups of 
structure factors whose diffraction vectors form closed 
polygons are, however, invariant to choice of origin, 
and their determination does have physical significance. 
In this work we will be concerned with the experimental 
determination of such invariant quantities in centro- 
symmetric crystals whose origins are at centers of 
symmetry. Groups of structure factors of centro- 
symmetric crystals involved in simultaneous n-beam 
diffraction satisfy these requirements. 

* This paper was presented, by invitation, at the ACA Dynamical 
Diffraction Symposium held at the University of Oklahoma, 22 
March 1978, honoring Paul P. Ewald on the occasion of his 
ninetieth birthday. 

t This work was supported by the National Science Foundation 
and by the Joint Services Electronics Program. 
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A procedure for generating three-beam diffraction 
systematically is illustrated in Fig. 1. When reciprocal- 
lattice point (rip) H is brought to its diffracting 
position on the surface of the Ewald sphere, two-beam 
diffraction occurs. Diffracted beams are directed to O 
and H. If the crystal is rotated about OH, additional 
rip's (e.g. P) are brought successively to their diffract- 
ing positions. In each such instance simultaneous n- 
beam diffraction will occur so long as the setting of H 
on the Ewald sphere remains undisturbed. 

An alternative representation of three-beam diffrac- 
tion, within the crystal, is given in Fig. 2. The incident 
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Fig. 1. Simultaneous n-beam diffraction. 
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beam satisfies Bragg's law for diffraction by planes (H) 
and (P). The Bragg conditions may be written as: 

K H - -  K o = H, (1) 

K p -  K o = P. (2) 

The K's are the propagation vectors of the incident and 
diffracted beams. The rlp's to which they are directed 
are indicated by the subscripts. Subtraction of equation 
(2) from (1) gives: 

KH-- Kp= (H-- i 9) (3) 

in which K~, serves as the 'incident' beam vector. It is 
diffracted by the (H - P) planes in the K n direction. 
Under such conditions, parallel, overlapping, coherent 
beams are simultaneously directed to all the rip's in 
diffracting positions. It is evident that simultaneous n- 
beam diffraction can provide the necessary conditions 
for interference among discrete coherent beams, in 
simple, controllable form. 

Theory 

The kinematical theory of X-ray diffraction is used 
extensively in crystal structure analysis, but it is 
unsuited for the detailed analysis of wave fields in 
crystals, which is needed for phase determination. For 
the latter purpose, Ewald's (1916, 1917) self-consistent 
n-beam dynamical theory of diffraction provides an 
ideal tool. Excellent reviews of the basic theory are 
available: Batterman & Cole (1964); James (1963); 
Schwartz & Cohen (1977). 

The X-ray wavefields in n-beam diffraction obey 
Maxwell's equations for a medium with a complex, 
periodic dielectric constant. A sum of plane waves 
satisfying Bragg's Law is taken as the assumed solution 
for the wavefield: 

D =  Z D u e x p { - - [ 2 r c i ( K u . r - -  vt)]}. (4) 
H 

Using Bragg's Law (K u = K o + H) we have 

D = exp{--[2~ri(Ko.r-- vt)]} ~. Dnexp(--2~ziH.r ). (5) 
H 

K u is the wave vector within the crystal, directed to rip 
H; D n is the displacement vector, transverse to K n. 

The solutions of Maxwell's equations lead to a set of 
linear homogeneous equations for the amplitudes: 

2e n D u = - - F  ~. Fin - v) DvtH I, (6) 
P 

an expression first derived by Ewald (1917). F m_ e)is a 
structure factor; D e,, is the vector component of D e 

• . . I I . 

which is perpendicular to K n. ez is a negative quantity 
defined by IKul = Ikl (1 + eu); k is the vacuum wave 
vector; F is a constant equal to e 2 ~.2/4zc2 eo mc2 V; V is 

the volume of the unit cell and the other terms have 
their usual meanings. The summation is over all rlp's, 
but it is limited in practice to terms for which the e's are 
very small. The corresponding rip's are then in position 
to diffract. The permitted values of e H are the solutions 
of the secular determinant of equation (6). At the exact 
n-beam setting all the e's are equal. 

Equation (6) yields 'n' vector equations for n-beam 
diffraction. To deal with polarization, it is convenient to 
decompose each D u into two mutually perpendicular 
components: D R and DT~. 2n scalar equations must 
then be taken into account. Usually, the solutions are 
obtained in the form of closely spaced pairs. The 
relatively minor differences between members of each 
pair are due to polarization effects. To minimize geo- 
metrical complexity, we will ignore polarization in our 
discussion. No significant loss of generality results, and 
the number of equations is cut in half. In our 
calculations, however, all 2n equations are taken into 
account. 

In two-beam diffraction only two rip's are in their 
diffracting positions. The corresponding solutions of 
equation (6) are readily obtained: 

F~, = _ + (7) 

The magnitudes of the solutions are independent of the 
phases of the structure factors. It can be concluded, 
therefore, that in two-beam diffraction it is not possible 
to determine the phases directly from the diffracted 
intensities. 

The determinant of the coefficients of the D's, in the 
three-beam version of equation (6), is given in equation 
(8). The latter is set equal to zero to avoid trivial 
solutions. 

F o + F<_n) Ft-v) 

F(u)  ( F o + ~ - ~ ) F m - v )  

Fo,) F{e-u) (Fo + ~ )  

= 0. (8) 

Expansion of the determinant yields a cubic equation: 

+ 2FHFeF~e_n) = 0. (9) 

Examination of equation (9) reveals that the permit- 
ted values of e o are strongly phase dependent. The 
equation has three unequal real roots, summing to zero. 
The distribution of the signs of the roots is determined 
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by the sign of the last term, i.e. by the sign of  the 
invariant phase of  the structure factor triplet. If one of 
the F 's  equals zero, the structure factor product 
vanishes; one root then equals zero and the other two 
equal + the geometric mean of the non-zero structure 
factors. In the general case the two possible dis- 
tributions of the roots, ( - + + )  or ( + - - ) ,  lead to 
propagating modes which can differ significantly with 
respect to excitation and absorption. 

Calculations 

The general solution for the e's near an n-beam point is 
usually represented by surfaces ('sheets') in reciprocal 
space. These define the possible origins of the wave- 
vector sets: K o, K u, Kp. The collection of sheets for all 
the modes is the 'dispersion surface'. A calculated sec- 
tion through a dispersion surface is shown in Fig. 3.* 
The plane of the section is the perpendicular bisector of 
OH. The pairs of approximately horizontal curves in the 
right- and left-hand portions of Fig. 3 are the loci of 
points ('tie-points') at which the diffraction conditions 
for two-beam (O, H) diffraction are satisfied. Move- 
ment along these curves, for example from left to right, 
corresponds to rotation of the crystal in the opposite 
sense. Near the center of the figure, at Acp = 0, the con- 
ditions for simultaneous diffraction involving rip P are 
also satisfied. The exact, geometrical three-beam setting 
lies along A~p = 0. Transitions from two- to three-beam 
diffraction take place between the three-beam setting 
and the two-beam regions. The distortion of the two- 
beam dispersion surface by the three-beam interaction 
is shown clearly in the figure. 

* Figs. 3 and 4 have been calculated for both positive and 
negative triplet-phase products. The 'negative' calculations are 
shown when the figures are rotated by 180 ° from their 'normal' 
positions. 
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Fig. 3. Calculated section through a dispersion surface. 

Because polarization effects are not included in Fig. 
3, only two modes of propagation are shown in each 
two-beam region. These are labelled (1,2) and (3,4) to 
the left, and (3,4) and (5,6) to the right. The two digits 
within each set of parentheses designate the two modes 
that are normally operative and that would be shown if 
polarization effects were taken into account in the 
figure. 

'La'  and 'Lo', along Acp = 0, are the three-beam Laue 
and Lorentz points. The horizontal lines passing 
through these points are referred to as the Laue and 
Lorentz lines. They are at reciprocal distances of 1/~, 
(vacuum) and 1/(2 (crystal)) from each of the active 
rip's: O and H in two-beam regions, and O, H and P at 
the exact three-beam setting. The separation of these 
lines is proportional to 1 - -  (n(crystal)) and to the average 
electron density in the crystal (Batterman & Cole, 
1964). Fig. 3 was calculated for F o equal to 150 elec- 
trons, and for Fn, F e, and F(n_e) equal to 50, 55 and 60 
electrons respectively. The locations corresponding to 
the three-beam roots are indicated by a, b and c. In Figs 
3, 4 and 5, A~o represents the angular deviation from the 
exact three-beam setting. 

The signs of the roots of equation (9) are ( -  + +) for 
a positive triplet phase and (+- - - - )  for a negative 
phase. The roots have large values if the triplet includes 
strong reflections. If a negative phase is assumed for the 
triplet, the largest root must be positive. In some cases 
its magnitude may exceed Fo; if it does, the negative 
phase must be discarded. No comparable restriction 
applies to the roots for positive phases. The behavior of 
certain 'inequalities' used in crystal structure analysis is 
very similar to the above. 

In general, the modes whose sheets are closest to the 
Laue line have the lowest absorption coefficients and 
are responsible for most of the transmitted intensities 
(Ewald & Hbno, 1968). For positive phase these are the 
(1,2) modes on the left and (3,4) on the right. The 
corresponding modes are easily identified on the rotated 
(negative) plot. For a positive triplet phase, the curves 
corresponding to these modes are approximately 
symmetrical about the three-beam region. For negative 
phase, however, the curves show a large gap to one side 
of the three-beam setting, and the (3,4) curve on the 
right reaches positions equivalent to those of (1,2) on 
the left only at relatively large A~o. These left-right 
differences lead to differences between the spatial dis- 
tributions of the diffracted intensities for positive and 
negative phases. The positive-negative differences are 
maximized when all three F 's  are equal. 

The intensity of beam H is proportional to I D n 12: 

1,,= 

) {Du(m)exp[2rdK'H(m). rl}{expl-2~ w''' rl} t ~'(m)" 

• t t  where K u = K~ -- tK u. The sum is over the modes of 
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Fig. 4. Relative absorption coefficients in three-beam diffraction, 
calculated for positive and negative phases. 

propagation, m. The excitations of  modes of pro- 
pagation and the absorption coefficients are determined 
by the terms in the first and second sets of  curly 
brackets respectively. 

Fig. 4 shows the relative absorption coefficients of  
the modes, p, , /go.  We note that the left-right dif- 
ferences among curves, representing the low absorption 
modes, are small for positive and much larger for 
negative phase. 

Plots of  excitations are shown in Fig. 5(a) and (b). 
The curves have been thickened to show where lUm/lU o is 
less than unity. The weighted excitation curves show 
the same types of  phase dependence of the spatial dis- 
tributions on the diffracted intensities as did Figs. 3 and 
4. 

Experimental 

The phase effects discussed in the preceding sections 
have been investigated experimentally using essentially 
perfect germanium crystals about 0 .4  mm thick, and 
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Fig. 5. Excitations of modes of propagation, calculated for(a) 
positive and (b) negative phases. Heavy lines show regions where 
P/Po is less than unity. 
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Fig. 6. Divergent-beam photographs of three-beam diffraction in a- 

aluminum oxide. (a) Positive triplet phase. (b) Negative triplet 
phase. 
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relatively imperfect crystals of st-aluminum oxide, 
about 0-2 mm thick. The phases of the reflections are, 
of course, well known for both materials. 

To achieve adequate resolution, a microfocus diver- 
gent X-ray beam was used. The X-ray source was a Cu 
K target; the focus was about 40 /am in diameter. At 
the take-off angles used in this work (4 to 8°), the 
effective focal spot was about 40 x 5/am. The specimen 
crystals were oriented so that the smaller dimension 
determined the resolution along the two-beam reflection 
lines shown in Fig. 6(a) and (b). The source-to-crystal 
distance was 80 mm; the specimen-to-film distance was 
1650 mm. The latter path was evacuated. 

About 25 three-beam interactions in germanium and 
aluminum have been recorded photographically, using 
Kodak Type A film.* Fig. 6(a) and (b) illustrates the 
results obtained and shows two-beam Cu K~t 1 and ~2 
(112) reflection lines. The three-beam interaction 
regions are near the centers of the photographs. In Fig. 
6(a) (positive phase) there is no significant difference 
between the intensities recorded to the left and right of 
the three-beam region. The left-right intensity dif- 
ferences calculated for negative phases are clearly dis- 
played in Fig. 6(b). In fewer than half of the photo- 
graphs were the positive-negative intensity differences 
too small to permit definitive phase assignments. Most 
of these difficulties appeared to be caused by our 
selection of relatively unfavorable triplets for study, i.e. 
cases in which the magnitudes of the three F 's  differed 
widely from one another. None of the photographs, 
however, indicated phases at variance with the known, 
correct ones. 

* The photographs were taken by Mr Po Wen Wang, to whom 
the author is deeply grateful. 

Summary 

The phases of X-ray reflections from single crystals are 
not lost when three-beam simultaneous diffraction 
occurs. They may be determined by analyzing the dis- 
tribution of the diffracted intensities about the three- 
beam point, under the conditions outlined in the 
preceding sections. It is not yet possible to indicate the 
extent to which the phase-determining methods 
described above can be applied to the 'mosaic' crystals 
usually used in crystal structure analysis. Our ex- 
perience with relatively imperfect aluminum oxide 
crystals shows that the crystals need not be ideally 
perfect. Additional work with highly imperfect crystals 
is needed. The strictly collimated and highly intense X- 
ray beams available from synchrotron sources appear 
to be ideally suited for investigations of this sort. 
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Abstract 

Complex diffraction contrast features on X-ray topo- 
graphs are often difficult to interpret by simple 
arguments. In such cases computer-simulation methods 
have frequently proved useful in understanding the 

* This paper was presented, by invitation, at the ACA Dynamical 
Diffraction Symposium held at the University of Oklahoma, 22 
March 1978, honoring Paul P. Ewald on the occasion of his 
ninetieth birthday. 

observed contrast features and in elucidating the nature 
of the defect involved. The application of computer- 
simulation methods for interpreting X-ray diffraction 
contrast at planar and line defects in crystals is out- 
lined. 

There are many instances in X-ray topography where 
detailed analyses of the various complex contrast 
effects observed are necessary. In such cases it would 
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